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Mechanism of an unusual decarboxylative cyclization
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Abstract—The mechanism of an unusual decarboxylative cyclization from 5-methoxy-1-(2-carboxyphenyl)-1,4-dihydro-4-oxopyr-
idine-2-carboxylic acid (diacid) to 3-methoxypyrido[1,2-a]indole-2,10-dione (ketone) has been investigated. 13C-labeling has demon-
strated that the carbonyl carbon of the ketone arises exclusively from the anthranilic acid carboxyl of the diacid. A zwitterionic
mechanism has been proposed.
� 2004 Elsevier Ltd. All rights reserved.
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Scheme 1.
Pterocellins A (1) and B (2) are antineoplastic alkaloids
(Fig. 1) recently isolated from a New Zealand marine
Bryozoan.1 NMR studies on these substances, sup-
ported by a single crystal X-ray structure determination
on the deep red Pterocellin A, reveal that these com-
pounds possess the structurally novel pyrido[4,3-b]indol-
izine-5,7-dione core, a deceptively simple yet challenging
synthetic target.

In surveying potential routes to the Pterocellins we dis-
covered that the benzenoid counterpart of their core,
namely 3-methoxypyrido[1,2-a]indole-2,10-dione (4)
had been described in 1997 by Korenova et al.2 In that
report, the model core 4 had been produced in high
yield as a dark red solid, mp 204–206 �C, by heating 5-
methoxy-1-(2-carboxyphenyl)-1,4-dihydro-4-oxopyridine-
2-carboxylic acid (3) in refluxing acetic anhydride
(Scheme 1).
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Figure 1.
Since the relatively mild decarboxylative cyclization of
diacid 3 to ketone 4 was unusual, we undertook to con-
firm Korenova�s observations. In fact, when diacid 3 is
held at 100 �C in acetic anhydride for several hours
(optimum conditions), a dark red crystalline ketone
melting at 251–252 �C was obtained in nearly quantita-
tive yield. Despite the melting point discrepancy, the
1H NMR, 13C NMR, IR, MS, and HRMS of our prod-
uct were in agreement with the data of Korenova, and in
full accord with the proposed tricyclic structure 4.3 With
the Korenova cyclization thus confirmed, we considered
that this unusual ring closure may represent an intramo-
lecular acylation of the pendant anthranilic acid ring by
an activated pyridone-2-carboxyl group (Scheme 2).

Two new experimental observations cast doubt on the
above mechanism. When 5-methoxy-1-phenyl-1,4-dihy-
dro-4-oxopyridine-2-carboxylic acid (7) was heated in
acetic anhydride or in dimethyl sulfoxide, no cyclization
was observed, and only the decarboxylation product 8
was isolated. In contrast, pyridone ester 9 in DMSO at
120 �C was smoothly converted to the tricyclic ketone
4 in 91% yield (Scheme 3).
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In order to firmly establish the origin of the ketone car-
bonyl in product 4, a 13C-labeled precursor 12 was syn-
thesized by condensation of 13C-anthranilic acid 10
(prepared in three steps from 2-bromonitrobenzene
and Cu13CN)4 with the methoxypyranone acid 11 as
shown in Scheme 4. When this 13C-labeled 12 was
heated in acetic anhydride at 100 �C for several hours,
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the red crystalline ketone product 13 was identified as
having retained all of the original 13C-label at the new
carbonyl group. Thus, ketone 13 showed in the 13C
NMR a huge peak at 183.8ppm for the 13C-carbonyl
carbon, and in the mass spectrum the [MH]+ ion was
at m/z = 229, with the m/z = 228 peak for the unlabeled
compound 4 absent. Moreover, in the 1H NMR, long-
range coupling of the 13C-carbonyl carbon to both adja-
cent ortho protons could be clearly seen, with
J = 2.8Hz.5 The above data establish that the ketone
carbonyl in the cyclization of 3 arises from the anthrani-
lic carboxyl, and not from the pyridone carboxyl.

The preceding results led to a new mechanism (Scheme
5) in which the C(2) pyridone carbon loses H+ and
CO2 to become an anionic nucleophilic center, which
subsequently attacks the anthranilic carboxyl. There is
some literature analogy for direct C(2) anion formation
from N-alkyl-4-oxo-pyridines using n-BuLi at �78 �C,6
and from deuterium exchange at 100 �C.7

We obtained evidence consistent with C(2) nucleophilic-
ity by heating pyridone acid 7 in DMSO at 120 �C in the
presence of weak electrophiles, leading to 14,8 15,9 and
16,10 as summarized in Scheme 6.
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Two subsequent experiments employing the sodium salt
of acid 7 and ester acid 9 required us to further revise the
second mechanism (Scheme 5). We found that no
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decarboxylation occurred upon heating the salt 17 in
DMSO at 120 �C for many hours. Moreover, the sodium
salt 18 was similarly stable under these conditions
(Scheme 7).

These last results led us to a third mechanism (Scheme 8)
which requires the participation of the carboxyl proton
to drive a zwitterionic reaction sequence.

This last mechanism appears to fit all of our data and is
entirely consistent with the 1965 observation of Beak
and Bonham7 on the rapid decarboxylation of 4-meth-
oxypyridinium-2-carboxylates, as well as with the early
work of Hammick and co-workers11 on the decarboxyl-
ation of a-picolinic acid. To our knowledge this is the
first example of the use of such decarboxylations to form
fused pyridone ring systems.
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